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The capacitance matrix is given by
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Separating this into the three Hamiltonian terms, we get
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We can now define the dimensionless charge number and flux operators
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where we have used the fact that the denominator is the determinant of the capacitance matrix

det C = (Cq + Cy) (Cr + Cy) — C2 = CoCr + CoCy + C1.Cy



and we have defined the capacitances
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We now quantize the Hamiltonian by promoting n and ¢ to operators and then writing them in terms of mode operators as
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We see that these satisfy the commutation relations as needed
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The resonator Hamiltonian can be written as
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The interaction Hamiltonian then becomes
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Writing this as Hiy = g (dJr — d) <3T - IS), where the order of @ and b have been switched since they commute with each
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other, we get
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To see it gives us the result

when C; < Cq, C,, we first see that
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If the approximation is taken much earlier in the derivation, the defination of E¢ ¢ will also now include the approximated
capacitance
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