Source code for squadds.interpolations.physics

import pandas as pd
from pyEPR.calcs import Convert

from squadds import Analyzer
from squadds.core.utils import *
from squadds.interpolations.interpolator import Interpolator


[docs] class ScalingInterpolator(Interpolator): """Class for scaling-based interpolation.""" def __init__(self, analyzer: Analyzer, target_params: dict): super().__init__(analyzer, target_params)
[docs] def get_design(self) -> pd.DataFrame: """ Retrieves the design options for qubit and cavity based on target parameters. Returns: pd.DataFrame: A DataFrame containing the design options for qubit and cavity. """ # Extract target parameters f_q_target = self.target_params['qubit_frequency_GHz'] g_target = self.target_params['g_MHz'] alpha_target = self.target_params['anharmonicity_MHz'] f_res_target = self.target_params['cavity_frequency_GHz'] kappa_target = self.target_params['kappa_kHz'] try: res_type = self.target_params['resonator_type'] except: res_type = self.analyzer.selected_resonator_type self.df = self.analyzer.df # Find the closest qubit-claw design if self.analyzer.selected_resonator_type == 'half': closest_qubit_claw_design = self.analyzer.find_closest({"qubit_frequency_GHz": f_q_target,'anharmonicity_MHz': alpha_target, 'g_MHz': g_target},parallel=True, num_cpu="auto", num_top=1) else: closest_qubit_claw_design = self.analyzer.find_closest({"qubit_frequency_GHz": f_q_target,'anharmonicity_MHz': alpha_target, 'g_MHz': g_target}, num_top=1) # Scale values alpha_scaling = closest_qubit_claw_design['anharmonicity_MHz'] / alpha_target g_scaling = g_target / closest_qubit_claw_design['g_MHz'] # Scale qubit and claw dimensions updated_cross_length = string_to_float(closest_qubit_claw_design["design_options_qubit"].iloc[0]['cross_length']) * alpha_scaling.values[0] updated_claw_length = string_to_float(closest_qubit_claw_design["design_options_qubit"].iloc[0]["connection_pads"]["readout"]['claw_length']) * g_scaling.values[0] * alpha_scaling.values[0] # Scaling logic for cavity-coupler designs # Filter DataFrame based on qubit coupling claw capacitance try: cross_to_claw_cap_chosen = closest_qubit_claw_design['cross_to_claw'].iloc[0] except: cross_to_claw_cap_chosen = closest_qubit_claw_design['cross_to_claw_closest'].iloc[0] threshold = 0.3 # 30% threshold try: filtered_df = self.df[(self.df['cross_to_claw'] >= (1 - threshold) * cross_to_claw_cap_chosen) & (self.df['cross_to_claw'] <= (1 + threshold) * cross_to_claw_cap_chosen)] except: filtered_df = self.df[(self.df['cross_to_claw_closest'] >= (1 - threshold) * cross_to_claw_cap_chosen) & (self.df['cross_to_claw_closest'] <= (1 + threshold) * cross_to_claw_cap_chosen)] # Find the closest cavity-coupler design merged_df = self.analyzer.df.copy() system_chosen = self.analyzer.selected_system H_params_chosen = self.analyzer.H_param_keys self.analyzer.df = filtered_df self.analyzer.selected_system = 'cavity_claw' self.analyzer.H_param_keys = ['resonator_type','cavity_frequency_GHz', 'kappa_kHz'] self.analyzer.target_params = {'cavity_frequency_GHz': f_res_target, 'kappa_kHz': kappa_target, 'resonator_type': res_type} target_params_cavity = {'cavity_frequency_GHz': f_res_target, 'kappa_kHz': kappa_target, 'resonator_type': res_type} if self.analyzer.selected_resonator_type == 'half': closest_cavity_cpw_design = self.analyzer.find_closest(target_params_cavity,parallel=True, num_cpu="auto", num_top=1) else: closest_cavity_cpw_design = self.analyzer.find_closest(target_params_cavity, num_top=1) closest_kappa = closest_cavity_cpw_design['kappa_kHz'].values[0] closest_f_cavity = closest_cavity_cpw_design['cavity_frequency_GHz'].values[0] if self.analyzer.selected_resonator_type == 'half': closest_coupler_length = string_to_float(closest_cavity_cpw_design["design_options_cavity_claw"].iloc[0]['cplr_opts']['finger_length']) else: closest_coupler_length = string_to_float(closest_cavity_cpw_design["design_options_cavity_claw"].iloc[0]['cplr_opts']['coupling_length']) # Scale resonator and coupling element dimensions updated_resonator_length = string_to_float(closest_cavity_cpw_design["design_options_cavity_claw"].iloc[0]["cpw_opts"]['total_length']) * (closest_cavity_cpw_design['cavity_frequency_GHz'] / f_res_target).values[0] updated_resonator_length = round(updated_resonator_length) res_scaling = closest_f_cavity / f_res_target res_scaling = closest_f_cavity / f_res_target kappa_scaling = np.sqrt(kappa_target / closest_kappa) print("="*50) print(f"Kappa scaling: {kappa_scaling}") print(f"g scaling: {g_scaling.values[0]}") print(f"alpha scaling: {alpha_scaling.values[0]}") print(f"resonator scaling: {res_scaling}") print("="*50) updated_coupling_length = closest_coupler_length * kappa_scaling # round updated_coupling_length to nearest integer updated_coupling_length = round(updated_coupling_length) # Reset the analyzer's DataFrame self.analyzer.df = merged_df self.analyzer.selected_system = system_chosen self.analyzer.H_param_keys = H_params_chosen # a dataframe with three empty colums interpolated_designs_df = pd.DataFrame(columns=["design_options_qubit", "design_options_cavity_claw", "design_options"]) # Update the qubit and cavity design options qubit_design_options = closest_qubit_claw_design["design_options_qubit"].iloc[0] qubit_design_options['cross_length'] = f"{updated_cross_length}um" qubit_design_options["connection_pads"]["readout"]['claw_length'] = f"{updated_claw_length}um" required_Lj = Convert.Lj_from_Ej(closest_qubit_claw_design['EJ'].iloc[0], units_in='GHz', units_out='nH') qubit_design_options['aedt_hfss_inductance'] = required_Lj*1e-9 qubit_design_options['aedt_q3d_inductance'] = required_Lj*1e-9 qubit_design_options['q3d_inductance'] = required_Lj*1e-9 qubit_design_options['hfss_inductance'] = required_Lj*1e-9 qubit_design_options["connection_pads"]["readout"]['Lj'] = f"{required_Lj}nH" # setting the `claw_cpw_length` params to zero qubit_design_options["connection_pads"]['readout']['claw_cpw_length'] = "0um" cavity_design_options = closest_cavity_cpw_design["design_options_cavity_claw"].iloc[0] cavity_design_options["cpw_opts"]['total_length'] = f"{updated_resonator_length}um" if self.analyzer.selected_resonator_type == 'half': cavity_design_options['cplr_opts']['finger_length'] = f"{updated_coupling_length}um" else: cavity_design_options['cplr_opts']['coupling_length'] = f"{updated_coupling_length}um" # update the claw of the cavity based on the one from the qubit cavity_design_options["claw_opts"]["connection_pads"] = qubit_design_options["connection_pads"] interpolated_designs_df = pd.DataFrame({ "coupler_type": self.analyzer.selected_coupler, "design_options_qubit": [qubit_design_options], "design_options_cavity_claw": [cavity_design_options], "setup_qubit": [closest_qubit_claw_design["setup_qubit"].iloc[0]], "setup_cavity_claw": [closest_cavity_cpw_design["setup_cavity_claw"].iloc[0]], }) device_design_options = create_unified_design_options(interpolated_designs_df.iloc[0]) # add the device design options to the dataframe interpolated_designs_df["design_options"] = [device_design_options] interpolated_designs_df.iloc[0]["design_options"]["qubit_options"]["connection_pads"]["readout"]["claw_cpw_length"] = "0um" return interpolated_designs_df